

Activités interdisciplinaires menées au LSM Modane – 26 janvier 2016

Métrologie de la contamination radioactive dans les matériaux et circuits électroniques à l'échelle du ppb et en-deçà *Activités de l'IM2NP au LSM*

J.L. Autran, D. Munteanu IM2NP – UMR CNRS 7334, Marseille

Aix Marseille

Remerciements

- P. Roche, G. Gasiot (STMicroelectronics, Crolles)
- **P. Maillot** (STMicroelectronics, Rousset)
- B. Dwyer McNally (XIA LLC, USA)
- F. Mauger (LPC-Caen)
- G. Warot, M. Zampaolo, F. Piquemal (LSM, Modane)
- J. Busto (CPPM, Marseille)

Plan de la présentation

- Introduction Contexte
- Impuretés radioactives et matériaux radioactifs
- Détection électrique au niveau circuit
- Métrologie au niveau wafer
- Conclusion & perspectives

Evolution de la microélectronique : diminution des dimensions du transistor MOS et de la tension d'alimentation des circuits

After Cherng in "Advances in Solid State Circuit Technologies", Intech (2010)

 \Rightarrow Diminution de la <u>charge critique</u> des circuits logiques

Aix*Marseille

<u>charge critique < charge déposée</u> par une particule ionisante (α, p, ion lourd) et collectée par un nœud sensible du circuit

⇒ Apparition de "single events" dans les circuits logiques

Autran et al. ESREF & NSREC (2014)

Aix*Marseille

Adapted after Baumann, *IEEE Trans. Device Mater. Reliab.* 5, 305-316 (2005)

Aix*Marseille

Exemple: basculement d'un point mémoire SRAM → "Soft Error"

Radiations naturelles au niveau terrestre (i.e. au niveau du sol)

<u>Atmospheric-particles</u> Elementary particles - device interactions (high energy neutrons)

Impuretés radioactives et matériaux radioactifs

 \rightarrow Use of Silicon wafers, ceramic packages and contact bumps contaminated with Uranium and Thorium elements at <u>ppb levels</u>

→ 0.5 ppb of ²³⁸U in Silicon = 425 Bq/m³ = 0.18 Bq/kg

→ <u>Compared to</u>: Radioactivity of sea water: 12 Bq/kg Radioactivity of spring water: 0.1 Bq/kg

0.5 ppb of {}^{238}U in Silicon = 2.28×10⁻³ α/cm²/h

Impuretés radioactives et matériaux radioactifs

Aix*Marseille

Impuretés radioactives et matériaux radioactifs

→ Introduction of new materials with natural alpha-particle emitter isotopes: platinium (silicides), hafnium (gate dielectrics)

TEM cross-section - After Intel

Aix*Marseille

Appl. Phys. Lett. 93, 064105 (2008)

TABLE I. Disintegration rates of radioactive materials. Concentrations of radioactive nuclei are deduced from natural abundances.

Element $T_{1/2}$ (s)		Natural abundance (%)	Disintegration rate $[(mm^2 \ \mu m \ 10^9 \ h)^{-1}]$	
¹⁹⁰ Pt	2.05×10^{19}	0.014	85.21×10^{4}	
¹⁴⁴ Nd	7.23×10^{22}	23.8	41.07×10^{4}	
¹⁵² Gd	3.41×10^{21}	0.2	7.31×10^{4}	
¹⁴⁸ Sm	2.21×10^{23}	11.24	6.35×10^{4}	
¹⁸⁷ Re	1.37×10^{18}	62.6	5.70×10^{4}	
¹⁸⁶ Os	6.31×10^{22}	1.59	3.14×10^{4}	
¹⁷⁴ Hf	6.31×10^{22}	0.16	0.32×10^4	

After Wrobel et al. (IES-CNRS Montpellier)

→ Expériences "temps réel" sur des circuits mémoires

Aix*Marseille

-1700 m under rock DEPUIS 2007

DEPUIS 2005

+2552 m in Alp mountains

512 circuits SRAM 40nm (ST)

Aix*Marseille

384 circuits SRAM 65nm (ST)

Aix*Marseille

Autran et al. Int. Reliab. Phys. Symp. (2012)

Aix*Marseille

Number of SEU

• Up to 20,000 h of cave characterization

Aix*Marseille

• α-SER reevaluated to 2079 FIT/MBit

• Monte-Carlo simulation gives a contamination level by ²³⁸U impurities of 0.37 ppb

• Very good agreement with wafer-level characterization (alpha emissivity) in the range [0.2-0.5] ppb

Duration (×10⁴ hours)

Autran et al. Microelec. Reliab. 50, 1822–1831(2010)

Synthèse : 8 années de tests temps réel

Platform	Circuit & Technology	Test temp.	Initial Mbit under test	Start date	Stop date	Effective cumulated hours of test	Experimental bit flip SER at test location (FIT/Mbit)
ASTEP	130 nm SRAM	RT	3,664	03/31/2006	11/26/2006	5,200	4,658
LSM			3,472	10/16/2007	10/15/2010	24,747	2,079
ASTEP		RT	3,216	01/21/2008	05/07/2009	11,278	2,670
		85 °C	2,884	06/26/2009	01/24/2013	28,482	2,670
LSM	65 nm SRAM	RT		04/11/2008	01/25/2015	57,058	1,040
Marseille		RT	3,226	03/13/2015	Ongoing	1,650	1,503 (to be consolidated)
ASTEP	40 nm SRAM	RT	7,168	11/03/2011	10/06/2014	27,473	5,185
Marseille		RT		10/16/2014	Ongoing	4,625	1,348 (to be consolidated)

Autran et al. in Microelec. Reliab. (2015)

Aix*Marseille

Synthèse : 8 années de tests temps réel

Autran et al. IEEE REDW (2014)

Aix*Marseille

Méthode non destructive

Aix*Marseille

<u>Détection</u> et spectroscopie des particules alpha émises à la surface d'un wafer

> Alpha-particle ultra low background counter

Méthode destructive

<u>Analyse physico-chimique</u> par spectrométrie de masse d'un wafer décomposé en phase vapeur

VPD-ICPMS

 \rightarrow Nouvelle architecture de compteur – <u>Technologie XIA LLC</u>

Aix*Marseille

After Dwyer McNally, IEEE SER Workshop (2011)

→ Caractérisation du compteur UltraLo 1800 XIA LLC

Aix*Marseille

Campagnes de mesures – Août-Décembre 2010 (collaboration XIA-IM2NP)

After Dwyer McNally, IEEE SER Workshop (2011)

\rightarrow Caractérisation de wafers de silicium 300 mm

Aix*Marseille

m2np

→ Comparaison entre différents équipements
Etude conduite par XIA LLC en 2012 avec les cinq premiers équipements:
XIA, IBM (Site 1), IM2NP, Honewell, IBM (Site 2)

Caractérisation d'une semaine (168h) pour chaque échantillon

Aix*Marseille

After Dwyer McNally, SER Workshop (2012)

Conclusion - Perspectives

 La radioactivité alpha des matériaux est aujourd'hui l'une des composantes essentielles (avec le rayonnement atmosphérique) du taux d'aléas logiques (Soft Error Rate) dans les circuits CMOS <u>au niveau du sol</u>

→ problématique fondamentale pour les applications « haute fiabilité » (médical, sécurité, transport)

- Besoin d'une métrologie de la contamination alpha au niveau wafer/packaging dans la gamme [ppt – ppb]
- Deux techniques compatibles « wafer-level »: Spectrométrie alpha et VPD-ICPMS
- Nombreux sujets ouverts: instrumentation, calibration, modélisation et simulation,...

Conclusion - Perspectives

- Projet de création d'une Plateforme "Ultra Basse Radioactivité" pour la micro-nanoélectronique au Laboratoire Souterrain de Modane – Plateforme ULTIME
- Objectif : caractérisations par spectrométrie alpha et gamma de matériaux en couches minces pour la microélectronique
- Projet porté par les laboratoires IM2NP, LSM, CPPM et LPC Caen
- Soutien du Laboratoire Commun STMicroelectronics-IM2NP
- Appel à projet PEPS Interdisciplinaires 2015 FaiDoRA (Faibles Doses, Risques, Alertes) 2015 infructueuxNouvelle soumission en 2016 ?

Merci pour votre attention

<u>Contact</u>: Jean-Luc Autran Aix-Marseille Université & CNRS, IM2NP, UMR 7334 <u>jean-luc.autran@univ-amu.fr</u>

GDR CNRS 33469 ERRATA

*E*ffets des *R*adiations sur l'*E*lectronique aux niveaux *A*tmosphérique et *T*errestre <u>http://www.gdr-errata.fr/</u>