Clocks and Relativity: towards Relativistic Geodesy

Cecilia Clivati

Istituto Nazionale di Ricerca Metrologica c.clivati@inrim.it

Outline

- INRIM (and clocks) in a Nutshell
- Gravitational Red Shift
- Relativistic Geodesy with clocks

Outline

INRIM (and clocks) in a Nutshell

- Gravitational Red Shift
- Relativistic Geodesy with clocks

- The Italian National Metrological Institute
- ■200 employes, 24 M€ annual account
- 4th NMI in Europe (account/employers)
- 5th Public Research Institute in Italy
- Strong relations with Academia and Industry
- In charge of definition and realization of the SI

Realization of the second in the *Système International d'unités* (SI)

"The *second* is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom."

- Realized by atomic clocks
- A microwave is used to probe Cs

atoms that have by definition v=9192631770 Hz

- The highest ΔE , the highest the precision
 - \rightarrow from microwave to optical radiation

Realization of the second in the *Système International d'unités* (SI)

"The *second* is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom."

Primary atomic clock based on a Cs fountain Accuracy: 2 · 10⁻¹⁶

Optical atomic clock based on Ytterbium atoms Target accuracy: 10⁻¹⁷

Perspectives with optical clocks

Perspectives with optical clocks

Outline

INRIM (and clocks) in a Nutshell

Gravitational Red Shift

Relativistic Geodesy with clocks

Clocks and Gravitational Red-shift

In the weak field approximation (as in the Solar System), i.e. $W/c^2 \ll 1$, W gravitational potential c speed of light, given a reference potential W_0

two clocks placed at two different location in the field have а frequency offset:

$$\frac{v_0 - v(\bar{r})}{v_0} = \frac{W(\bar{r}) - W_0}{c^2}$$

On Earth (W₀ is the Geoid potential): $\frac{v_0 - v(\bar{r})}{v_0} \approx \frac{g_0}{c^2} m^{-1} = 1.09 \times 10^{-16} m^{-1}$

Clocks and Gravitational Red-shift

In the weak field approximation (as in the Solar System), i.e. $W/c^2 \ll 1$, W gravitational potential c speed of light, given a reference potential W_0 .

two clocks placed at two different location in the field have a frequency offset:

$$\frac{v_0 - v(\bar{r})}{v_0} = \frac{W(\bar{r}) - W_0}{c^2}$$

On Earth (W₀ is the Geoid potential): $\frac{v_0 - v(\bar{r})}{v_0} \approx \frac{g_0}{c^2} m^{-1} = 1.09 \times 10^{-16} m^{-1}$

Clocks and Gravitational Red-shift

Determination of equipotential surfaces (classical methods):

On Earth (W₀ is the Geoid potential):

$$\frac{v_0 - v(\bar{r})}{v_0} \approx \frac{g_0}{c^2} m^{-1} = 1.09 \times 10^{-16} m^{-1}$$

Perspectives with optical clocks

Outline

- INRIM (and clocks) in a Nutshell
- Gravitational Red Shift
- Relativistic Geodesy with clocks

International Timescales with Optical Clocks

(ITOC-JRP SIB55)

EMRP European Metrology Research Programme Programme of EURAMET

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Work Package 4: **Proof-of-principle relativistic geodesy experiment**

Relativistic Geodesy on the Alps

Relativistic Geodesy on the Alps

With accurate clocks and a fiber link connection, we can directly measure the potential difference at the 10 cm level (10⁻¹⁷) on short timescales (hours)

1000 m height difference \rightarrow frequency offset ~10⁻¹³, studied at the 10⁻¹⁷ level (test level ~10⁻⁴)

Transportable Sr lattice clock of PTB

LABORATOIRE SOUTERRAIN DE MODANE

Solar Neutrinos detector «NEMO» in LSM

Stationary Yb lattice clock at INRIM

INRIM -LSM optical link

- INRIM-LSM, commercial fiber, 151 km
- 2 fibers, one dedicated ITU channel
- Data and metrological channel at the same time
- EDFA amplifiers

LIFT-the Italian Link for Time and Frequency

Total Fiber Haul 800 km

- Two Commercial Dark Fibers available / DWDM and CWDM channels
- Fiber provided by Consortium GARR and Consortium TOP-IX
- Applications: relativistic geodesy, radioastronomy, spectroscopy...

Geodetic height: which sensitivity from clocks?

Gravity Measurements at INRIM/LSM

to define the gravity datum level required by the relative observations
Measurements done for INRIM and LSM in September 2013
Also INRIM contributes with its own absolute gravimetry

Levelling at INRIM

Yb optical clock, floor: $H_{INRIM,Yb} = 373.41 \pm 0.03 \text{ m}$

Starting the Levelling on October, 24th, after 11 p.m.

Levelling external reference markers (GNSS receiver, LEICA DNA03 and invar stadia)

October, 2nd and 24th

Gravity measurements at LSM

Gravity measurements at INRIM/LSM

Gravity measurements at INRIM/LSM

	Name	Site	Orthometric Height H/m
1	CS1LAB	ITOC Lab	1263.539(16)
2	CS2LAB	Absolute gravity Measurement	1263.627(16)
3	CS7	Tunnel Entrance (IT)	1297.604(16)
4	CS12800AF	Ventilation Tunnel (PM12800m)	1301.303(16)
5	IGM95	Benchmark Levelling IGM (BF15) - IT National Ref – nearby Tunnel	1291.66816)
6	CS6500	LSM entrance	1263.230(16)

INRIM, Yb lab: H = 237.41(3) mLSM, Sr lab: H = 1263.539(15) m

H(LSM)- H(INRIM) = 1026.13(3) m

Close to the start...

Geodesy with clocks: perspectives

A Fiber Links European Network

- Metrology at improved precision
- Various users outside metrology
- Multi–node

INRIM Atomic Clocks group

Group Leaders: F. Levi, D. Calonico Optical Link and Combs: C. Clivati, A. Mura, M. Frittelli, M. Zucco, A. Tampellini Yb Clock: M. Pizzocaro, P, Thoumany, G. Bolognesi, B. Rauf, G. Milani, F. Bregolin Cell Clocks: S. Micalizio, B. François Atomic Fountain: G. A. Costanzo Electronics: C. E. Calosso, E. K. Bertacco, C. Cardenas

thanks for your attention